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Parametrically Driven Pendulum and Exact Solutions 
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The parametrically driven pendulum s +fi (t)~ +f2(t) sin x = 0 cannot be solved 
in closed form for arbitrary functions fl, f2. We apply the Painlev6 test to obtain 
the constraint on the functions f~ and f2 for which the equation passes the test. 
The constraint on ft and f2, a differential equation which f~ and f2 obey, is 
discussed and solutions are given. The third Painlev6 transcendent plays a central 
rote. 

For nonlinear ordinary and partial differential equations the general 
solution usually cannot  be given explicitly. It is desirable to have an 
approach to find out whether a given nonlinear differential equation can 
be solved explicitly. We investigate the parametrical ly driven pendulum 

+f~( t )2  +f2(t)  sin x = 0 (1) 

where f l  and f2 are smooth functions. I f  f l ( t ) = 0  and f 2 ( t ) =  1, then (1) 
reduces to the equation of  the pendulum 5/+ sin x = 0. This equation can 
be solved in terms of  elliptic functions. For arbitrary functions f l  and f2 
the nonlinear equation (1) cannot  be solved explicitly. For example,  if  
f l ( t )  = Cl and f2(t) = 1 + c2 sin(l l t ) ,  where C 1 and c2 are constants, then (1) 
can show chaotic behavior  (Herbst  and Steeb, 1988) for certain values of  
c~, c2, and 1). Obviously, in this case (1) cannot be integrated. 

We would like to find the constraint on the functions f~ and f2 such 
that (1) can be solved or reduced to one of  the Painlev6 transcendents. We 
apply the Painlev6 analysis (Steeb and Euler, 1988, and references therein) 
to find the condition on f l  and f2. A similar program was performed for 
the damped  anharmonic  oscillator (Euler et al., 1989; Duarte  et al., 1990). 
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In order to perform the Painlev6 analysis, we have to apply the transfor- 
mation v ( t ) =  e x p [ i x ( t ) ] .  Then (1) takes the form 

v v " -  v a + f ~ ( t ) v v ' + ~ f 2 ( t ) ( v  3 - v) = 0 (2) 

Equation (2) is considered in the complex domain. Inserting the Laurent 
expansion 

v ( t )  = E a~(t - t , )  j -" (3) 
j = 0  

we obtain n = 2. At the resonance r = 2 we obtain the condition 

r t 2  t ! 2 2 2 
f 2 f z - f  2 + f 2fzf~ = 0 + 2 f  l f  2+ 2 f  l f  2 (4) 

I f  this condition is satisfied, the expansion coefficient a2 is arbitrary and 
(2) passes the Painlev6 test. A remark is in order for applying the Painlev~ 
test for nonautonomous systems. The coefficients that depend on the 
independent variable must themselves be expanded in terms of  t - t l ,  where 
t -  ( t -  f i )+ h.  If  nonautonomous terms enter the equation at lower order 
than the dominant  balance, the above-mentioned expansion turns out to 
be unnecessary, whereas if the nonautonomous terms are at the dominant 
balance level, they must be expanded with respect to t - q .  Obviously, in 
our case the functions f~ and f2 do not enter the expansion at the dominant 
level. 

A necessary condition that an ordinary differential equation is of  
Painlev6 type is that it passes the Painlev6 test. We say that an ordinary 
differential equation is of Painlev6 type if all its solutions possess the 
Painlev6 property, i.e., their only singularities are poles or nonmovable 
critical points. 

We discuss (4) by considering various cases. 
Case I. Let f l ( t ) =  0. Then we have f ~ f 2  _f~2 = 0. The general solution 

is given by f2 ( t )=  c~ e c2', where cl and c2 are constants of  integration. 
Obviously this equation is of Painlev~ type. Inserting this solution into (2) 
yields 

/ ) / ) t t  t2 - -  1 t~ -t-~C 1 eC2'(t~3--v)=0 (5) 

This equa t ion  is a special  case o f  (c2 = 1) 

VV"-- V '2 -- e t ( otv 3 -4-/3u) -- e2t(Tv4 + 6) = 0 (6) 

where a, /3, 3/, and 6 are complex constants. Equation (6) is the third 
Painlev~ transcendent after a transformation of  the independent variable 
(Ince, 1956). It is well known that this equation is not integrable in terms 
of classical transcendents. 
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Case II. Let f2 ( t )=  0. Then (4) is satisfied and (2) passes the Painlev6 
test. Obviously (1) is now linear. 

Case III. Let f l(t)=f2(t)=-f(t) .  Then we have 

f " f  - f ' 2  + 3f'f2 + 2f4=O (7) 

We now perform the Painlev~ test for (7) by inserting the Laurent exPansion 
(3). We obtain n = 1. All terms are dominant. There are two branches, 
namely ao = 1 and ao = 1/2. Let us first discuss the branch with ao = 1. The 
only resonance for this branch is r = - 1  (twofold). Since all terms are 
dominant,  we obtain a particular solution to (7) for the first branch, namely 
f ( t )  = 1/t. Inserting this solution into (2) yields 

~(v3-v) =0 (8) 
t 

This is a special case of the third Painlev6 transcendent. For the second 
branch the resonances are r = -1  and r = 1/2. Inserting the expansion 

v(t) = ~ a j ( t -  tl) J/2-1 (9) 
j=o 

into (7), we find that the expansion coefficient at r = 1/2 can be chosen 
arbitrarily. Thus, (7) does not pass the Painlev~ test, but the so-called weak 
Painlev6 test (Steeb and Euler, 1988, and references therein). Since all terms 
are dominant,  we find again a particular solution, namely f ( t )=  1/(2t).  
Inserting this solution into (2) leads again to a special case of  the third 
Painlev~ transcendent. 

Case IVo Let f l ( t ) =  c and f2(t)=f(t) ,  where c is a nonzero constant. 
Then (4) takes the form 

f , , f _ f ,2+ cff,+2c2f2 = 0 (10) 

The general solution to (10) is given by 

f ( t )  = exp [ - - ~  ( e -C ' - l ) -2c t+K2]  (11) 

where K~ and K2 are the constants of  integration. Obviously, (10) has the 
Painlev6 property. 

Case V. Let f2 be a given smooth function. Then the condition (4) is 
a Riccati equation. We find 

f ~ = - f  ~ + gf~ - g' (12) 

where 2g =f'2/f2. We obtain the general solution of  (12) as 
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where 

P(t)=exp[ftg(s)  ds] (14) 

We recall that the 50 ordinary differential equations of second order 
of Painlev6 type are just representatives of equivalence classes. The group 
under which the classification is done is given by 

T = 6 ( t )  

4',( t)x( t ) + 4'2(t) (15) 
x ( T ( t ) )  - 4"3( t)x( t) + 4'4(t) 

where 4'~, 4'2, 4'3, 4'4, and 6 are analytic functions of t. We conjecture that 
(2) together with fl given by (13) and arbitrary f2 can be transformed to 
the third Painlev6 transcendent. 

For certain choices of the parameters, the Painlev6 transcendents II-V 
admit one-parameter families of solutions expressible in terms of classical 
transcendental functions, such as Airy, Bessel, Weber-Hermite, and 
Whittaker, respectively (Gromak, 1978). 
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